[Statistics] Moment Generating Function (MGF)
๐ Moment Generating Function (MGF)
1. Definition
ํ๋ฅ ๋ณ์ $X$์ ๋ํด Moment Generating Function (MGF)์ ๋ค์๊ณผ ๊ฐ์ด ์ ์ ๋ฉ๋๋ค.
$$ M_X(t) = \mathbb{E}\left[ e^{tX} \right], \quad \text{for all } t \in \mathcal{T} \subset \mathbb{R} $$
์ฌ๊ธฐ์ $t$๋ ์ค์์ด๋ฉฐ, $M_X(t)$๊ฐ ์กด์ฌํ๋ ๊ตฌ๊ฐ $\mathcal{T}$๋ $M_X(t)$๊ฐ ์ ํํ ๋ชจ๋ ์ค์์ ์งํฉ์ ๋๋ค.
- $X$๊ฐ ์ด์ฐํ์ธ ๊ฒฝ์ฐ: $M_X(t) = \sum_x e^{tx} \mathbb{P}(X = x)$
- $X$๊ฐ ์ฐ์ํ์ธ ๊ฒฝ์ฐ: $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$
2. Existence Condition
- MGF๋ ํญ์ ์กด์ฌํ์ง๋ ์์ผ๋ฉฐ, ์ ์ด๋ $t=0$๊ทผ๋ฐฉ์์ ์๋ ดํ๋ ๊ตฌ๊ฐ์ด ์์ด์ผ ์ ์๋ฏธํฉ๋๋ค.
- $M_X(0) = \mathbb{E}[e^{0}] = 1$ (ํญ์ ์ฑ๋ฆฝ)
3. Properties
(1) Moment
$X$์ $n$์ฐจ ๋ชจ๋ฉํธ๋ MGF์ ๋ํจ์๋ฅผ ํตํด ๋ค์๊ณผ ๊ฐ์ด ๊ณ์ฐ๋ฉ๋๋ค:
$$ \mathbb{E}[X^n] = M_X^{(n)}(0) = \left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0} $$
(2) Same Distribution
๋ง์ฝ ๋ ํ๋ฅ ๋ณ์ $X, Y$์ ๋ํด $M_X(t) = M_Y(t)$๊ฐ ์ด๋ค ์ด๋ฆฐ ๊ตฌ๊ฐ ๋ด ๋ชจ๋ $t$์์ ์ฑ๋ฆฝํ๋ค๋ฉด,
$X$์ $Y$๋ ๋์ผํ ๋ถํฌ๋ฅผ ๊ฐ์ง๋๋ค. (Uniqueness Theorem)
(3) Independence & Product
๋ ๋ฆฝํ ํ๋ฅ ๋ณ์ $X, Y$์ ๋ํด:
$$ M_{X+Y}(t) = M_X(t) \cdot M_Y(t) $$
์ด๋ ๋ ๋ฆฝ์ฑ ํ์์๋ง ์ฑ๋ฆฝํฉ๋๋ค.
(4) Exponential Family Form
๋ค์๊ณผ ๊ฐ์ Canonical Form์ Exponential family form์ ๊ณ ๋ คํด๋ด ์๋ค.
$$f_{\eta}(x) = h(x)\exp\bigg(\eta^\top T(x) - A(\eta) \bigg)$$
$X$๊ฐ ์์ ๊ฐ์ ํํ์ density๋ฅผ ๊ฐ๋๋ค๋ฉด, $T(x)$์ mgf๊ฐ ์กด์ฌํ๋ฉฐ ๋ค์๊ณผ ๊ฐ์ด ์ฃผ์ด์ง๋๋ค.
$$M_{T(x)}(t) = \mathbb{E}[e^{t^\top}T(x)] = \exp{\bigg(A(\eta + t) - A(\eta)\bigg)}$$
Proof.
\begin{align*}
M_{T(x)}(t)
&= \mathbb{E}_\eta\left[ e^{t^\top T(x)} \right] \\
&= \int h(x)\exp\left( \eta^\top T(x) - A(\eta) \right) \cdot e^{t^\top T(x)} dx \\
&= \int h(x) \exp\left( (\eta + t)^\top T(x) - A(\eta) \right) dx \\
&= \exp(-A(\eta)) \int h(x)\exp\left( (\eta + t)^\top T(x) \right) dx \\
&= \exp(-A(\eta)) \cdot \exp(A(\eta + t)) \\
&= \exp(A(\eta + t) - A(\eta))
\end{align*}
4. Examples
mgf์ ์ ์๋ฅผ ์ด์ฉํ์ฌ ์ฌ๋ฌ ๋ถํฌ๋ค์ mgf์ ๋ชจ๋ฉํธ๋ฅผ ๊ตฌํด๋ณด๊ฒ ์ต๋๋ค.
๐ฒ $X \sim \text{Bernoulli}(p)$
\[
\begin{aligned}
M_X(t)
&= \mathbb{E}[e^{tX}] \\
&= e^{t \cdot 0} \cdot \mathbb{P}(X = 0) + e^{t \cdot 1} \cdot \mathbb{P}(X = 1) \\
&= (1 - p) + p e^t
\end{aligned}
\]
We know that for \( X \sim \text{Bernoulli}(p) \), the expected value is:
\[
\mathbb{E}[X] = p
\]
Let us verify this using the MGF:
\[
M_X(t) = (1 - p) + p e^t
\]
Then, the first derivative of \( M_X(t) \) is:
\[
M_X'(t) = \frac{d}{dt} \left[(1 - p) + p e^t\right] = p e^t
\]
Evaluating at \( t = 0 \):
\[
M_X'(0) = p e^0 = p = \mathbb{E}[X]
\]
๐ฒ $X \sim \text{Poisson}(\lambda)$
\[
\begin{aligned}
M_X(t)
&= \mathbb{E}[e^{tX}] \\
&= \sum_{x=0}^\infty e^{tx} \cdot \frac{\lambda^x e^{-\lambda}}{x!} \\
&= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!} \\
&= e^{-\lambda} \cdot \exp(\lambda e^t) \\
&= \exp\left( \lambda(e^t - 1) \right)
\end{aligned}
\]
We know that for \( X \sim \text{Poisson}(\lambda) \), the expected value is:
\[
\mathbb{E}[X] = \lambda
\]
From the MGF:
\[
M_X(t) = \exp\left( \lambda(e^t - 1) \right)
\]
Differentiate:
\[
M_X'(t) = \lambda e^t \cdot \exp\left( \lambda(e^t - 1) \right)
\]
Then evaluate at \( t = 0 \):
\[
M_X'(0) = \lambda \cdot 1 \cdot \exp(0) = \lambda = \mathbb{E}[X]
\]
๐ฒ $X \sim \mathcal{N}(\mu, \sigma^2)$
\[
\begin{aligned}
M_X(t)
&= \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(x - \mu)^2}{2\sigma^2} \right) dx \\
&= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( tx - \frac{(x - \mu)^2}{2\sigma^2} \right) dx \\
&= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{1}{2\sigma^2} \left[(x - \mu - \sigma^2 t)^2 - \sigma^4 t^2 \right] \right) dx \\
&= \exp\left( \mu t + \frac{1}{2} \sigma^2 t^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(x - \mu - \sigma^2 t)^2}{2\sigma^2} \right) dx \\
&= \exp\left( \mu t + \frac{1}{2} \sigma^2 t^2 \right)
\end{aligned}
\]
We know that \( X \sim \mathcal{N}(\mu, \sigma^2) \) has:
\[
\mathbb{E}[X] = \mu
\]
The MGF is:
\[
M_X(t) = \exp\left( \mu t + \frac{1}{2} \sigma^2 t^2 \right)
\]
Differentiate:
\[
M_X'(t) = \left( \mu + \sigma^2 t \right) \cdot \exp\left( \mu t + \frac{1}{2} \sigma^2 t^2 \right)
\]
At \( t = 0 \):
\[
M_X'(0) = \mu \cdot \exp(0) = \mu = \mathbb{E}[X]
\]
์ด MGF์ ํํ๋ ๋์ค์ ์ ๊ท๋ถํฌ์ ์์ ์ฑ, ๋์๋ฒ์น, ์ค์ฌ๊ทนํ์ ๋ฆฌ(CLT)์์๋ ๋งค์ฐ ์ค์ํ๊ฒ ์ฐ์ ๋๋ค.
5. Applications
๐ ๋ชจ๋ฉํธ ๊ณ์ฐ ๋ฐ ํน์ฑ ์ถ์
MGF๋ ๋ชจ๋ ์ฐจ์์ ๋ชจ๋ฉํธ๋ฅผ ๋ํจ์๋ก ์ป์ ์ ์๊ธฐ ๋๋ฌธ์, ๋ถํฌ์ ์ฑ์ง(ํ๊ท , ๋ถ์ฐ, ์๋, ์ฒจ๋ ๋ฑ)์ ๊ณ์ฐํ๋ ๋ฐ ์ ์ฉํฉ๋๋ค.
๐ ํ๋ฅ ๋ถํฌ์ ๋น๊ต ๋ฐ ์๋ณ
์๋ก ๋ค๋ฅธ ํ๋ฅ ๋ณ์๋ค์ MGF๋ฅผ ๋น๊ตํ๋ฉด ๋ถํฌ์ ๋์ผ์ฑ ์ฌ๋ถ๋ฅผ ํ๋ณํ ์ ์์ต๋๋ค.
๐ ํฉ์ฑ ๋ถํฌ์ ๋ถ์
๋ ๋ฆฝํ ํ๋ฅ ๋ณ์์ ํฉ์ ๋ถํฌ๋ฅผ ๊ณ์ฐํ ๋, MGF์ ๊ณฑ์ ํตํด ์๋ก์ด ๋ถํฌ์ MGF๋ฅผ ์ป๊ณ ,
์ญ๋ณํ์ ํตํด ๋ฐ๋ํจ์๋ฅผ ์ ๋ํ๋ ๋ฐ ์ฌ์ฉํ ์ ์์ต๋๋ค.
6. MGF vs. Characteristic Function (CF)
ํญ๋ชฉ Moment Generating Function (MGF) Characteristic Function (CF)
์ ์ | $M_X(t) = \mathbb{E}[e^{tX}]$ | $\varphi_X(t) = \mathbb{E}[e^{itX}]$ |
ํญ์ ์กด์ฌ? | ์๋์ค | ์ (๋ชจ๋ ํ๋ฅ ๋ณ์์ ๋ํด ์กด์ฌ) |
๋ชจ๋ฉํธ ๊ณ์ฐ | ๊ฐ๋ฅ | ๊ฐ๋ฅํ์ง๋ง ๋ณต์์ ๋ค๋ฃธ |
์๋ ด ๊ตฌ๊ฐ | ๋ณดํต $t$์ ๋ํด ๊ตญ์์ | ์ ์ฒด ์ค์์ ์์ ํญ์ ์๋ ด |
๊ณ ๊ธ ์ด๋ก | ๋ ์ผ๋ฐ์ (ํ์ง๋ง ์ค์ฉ์ ) | CLT, Fourier ๋ถ์ ๋ฑ์ ๋ ์ผ๋ฐ์ |
MGF๋ ๋ผํ๋ผ์ค ๋ณํ๊ณผ, CF๋ ํธ๋ฆฌ์ ๋ณํ๊ณผ ์ฐ๊ด์ฑ์ ๊ฐ๊ณ ์์ต๋๋ค.
๊ด์ฌ์์ผ์ ๋ถ๋ค์ ์ถ๊ฐ๋ก ๊ณต๋ถํด๋ณด์ ๋ ์ข์ ๊ฒ ๊ฐ์ต๋๋ค.