study/Statistics

[Statistics] Moment Generating Function (MGF)

ํฌ๊น€ 2025. 4. 22. 17:01

๐Ÿ“˜ Moment Generating Function (MGF)

1. Definition

ํ™•๋ฅ ๋ณ€์ˆ˜ $X$์— ๋Œ€ํ•ด Moment Generating Function (MGF)์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜ ๋ฉ๋‹ˆ๋‹ค.

$$ M_X(t) = \mathbb{E}\left[ e^{tX} \right], \quad \text{for all } t \in \mathcal{T} \subset \mathbb{R} $$

์—ฌ๊ธฐ์„œ $t$๋Š” ์‹ค์ˆ˜์ด๋ฉฐ, $M_X(t)$๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ตฌ๊ฐ„ $\mathcal{T}$๋Š” $M_X(t)$๊ฐ€ ์œ ํ•œํ•œ ๋ชจ๋“  ์‹ค์ˆ˜์˜ ์ง‘ํ•ฉ์ž…๋‹ˆ๋‹ค.

  • $X$๊ฐ€ ์ด์‚ฐํ˜•์ธ ๊ฒฝ์šฐ: $M_X(t) = \sum_x e^{tx} \mathbb{P}(X = x)$
  • $X$๊ฐ€ ์—ฐ์†ํ˜•์ธ ๊ฒฝ์šฐ: $M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$

2. Existence Condition

  • MGF๋Š” ํ•ญ์ƒ ์กด์žฌํ•˜์ง€๋Š” ์•Š์œผ๋ฉฐ, ์ ์–ด๋„ $t=0$๊ทผ๋ฐฉ์—์„œ ์ˆ˜๋ ดํ•˜๋Š” ๊ตฌ๊ฐ„์ด ์žˆ์–ด์•ผ ์œ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
  • $M_X(0) = \mathbb{E}[e^{0}] = 1$ (ํ•ญ์ƒ ์„ฑ๋ฆฝ)

3. Properties

(1) Moment

$X$์˜ $n$์ฐจ ๋ชจ๋ฉ˜ํŠธ๋Š” MGF์˜ ๋„ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋ฉ๋‹ˆ๋‹ค:

$$ \mathbb{E}[X^n] = M_X^{(n)}(0) = \left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0} $$

(2) Same Distribution

๋งŒ์•ฝ ๋‘ ํ™•๋ฅ ๋ณ€์ˆ˜ $X, Y$์— ๋Œ€ํ•ด $M_X(t) = M_Y(t)$๊ฐ€ ์–ด๋–ค ์—ด๋ฆฐ ๊ตฌ๊ฐ„ ๋‚ด ๋ชจ๋“  $t$์—์„œ ์„ฑ๋ฆฝํ•œ๋‹ค๋ฉด,

$X$์™€ $Y$๋Š” ๋™์ผํ•œ ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค. (Uniqueness Theorem)

(3) Independence & Product

๋…๋ฆฝํ•œ ํ™•๋ฅ ๋ณ€์ˆ˜ $X, Y$์— ๋Œ€ํ•ด:

$$ M_{X+Y}(t) = M_X(t) \cdot M_Y(t) $$

์ด๋Š” ๋…๋ฆฝ์„ฑ ํ•˜์—์„œ๋งŒ ์„ฑ๋ฆฝํ•ฉ๋‹ˆ๋‹ค.

(4) Exponential Family Form

๋‹ค์Œ๊ณผ ๊ฐ™์€ Canonical Form์˜ Exponential family form์„ ๊ณ ๋ คํ•ด๋ด…์‹œ๋‹ค. 

$$f_{\eta}(x) = h(x)\exp\bigg(\eta^\top T(x) - A(\eta) \bigg)$$

$X$๊ฐ€ ์œ„์™€ ๊ฐ™์€ ํ˜•ํƒœ์˜ density๋ฅผ ๊ฐ–๋Š”๋‹ค๋ฉด, $T(x)$์˜ mgf๊ฐ€ ์กด์žฌํ•˜๋ฉฐ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ฃผ์–ด์ง‘๋‹ˆ๋‹ค.

$$M_{T(x)}(t) = \mathbb{E}[e^{t^\top}T(x)] = \exp{\bigg(A(\eta + t) - A(\eta)\bigg)}$$

 

Proof.

\begin{align*}
M_{T(x)}(t) 
&= \mathbb{E}_\eta\left[ e^{t^\top T(x)} \right] \\
&= \int h(x)\exp\left( \eta^\top T(x) - A(\eta) \right) \cdot e^{t^\top T(x)} dx \\
&= \int h(x) \exp\left( (\eta + t)^\top T(x) - A(\eta) \right) dx \\
&= \exp(-A(\eta)) \int h(x)\exp\left( (\eta + t)^\top T(x) \right) dx \\
&= \exp(-A(\eta)) \cdot \exp(A(\eta + t)) \\
&= \exp(A(\eta + t) - A(\eta))
\end{align*}

 

 

4. Examples

mgf์˜ ์ •์˜๋ฅผ ์ด์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ๋ถ„ํฌ๋“ค์˜ mgf์™€ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ๊ตฌํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

๐ŸŽฒ $X \sim \text{Bernoulli}(p)$  

\[
\begin{aligned}
M_X(t) 
&= \mathbb{E}[e^{tX}] \\
&= e^{t \cdot 0} \cdot \mathbb{P}(X = 0) + e^{t \cdot 1} \cdot \mathbb{P}(X = 1) \\
&= (1 - p) + p e^t
\end{aligned}
\]

We know that for \( X \sim \text{Bernoulli}(p) \), the expected value is:

\[
\mathbb{E}[X] = p
\]

Let us verify this using the MGF:

\[
M_X(t) = (1 - p) + p e^t
\]

Then, the first derivative of \( M_X(t) \) is:

\[
M_X'(t) = \frac{d}{dt} \left[(1 - p) + p e^t\right] = p e^t
\]

Evaluating at \( t = 0 \):

\[
M_X'(0) = p e^0 = p = \mathbb{E}[X]
\]



๐ŸŽฒ $X \sim \text{Poisson}(\lambda)$  

\[
\begin{aligned}
M_X(t) 
&= \mathbb{E}[e^{tX}] \\
&= \sum_{x=0}^\infty e^{tx} \cdot \frac{\lambda^x e^{-\lambda}}{x!} \\
&= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!} \\
&= e^{-\lambda} \cdot \exp(\lambda e^t) \\
&= \exp\left( \lambda(e^t - 1) \right)
\end{aligned}
\]

We know that for \( X \sim \text{Poisson}(\lambda) \), the expected value is:

\[
\mathbb{E}[X] = \lambda
\]

From the MGF:

\[
M_X(t) = \exp\left( \lambda(e^t - 1) \right)
\]

Differentiate:

\[
M_X'(t) = \lambda e^t \cdot \exp\left( \lambda(e^t - 1) \right)
\]

Then evaluate at \( t = 0 \):

\[
M_X'(0) = \lambda \cdot 1 \cdot \exp(0) = \lambda = \mathbb{E}[X]
\]



๐ŸŽฒ $X \sim \mathcal{N}(\mu, \sigma^2)$  
\[
\begin{aligned}
M_X(t) 
&= \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(x - \mu)^2}{2\sigma^2} \right) dx \\
&= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( tx - \frac{(x - \mu)^2}{2\sigma^2} \right) dx \\
&= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{1}{2\sigma^2} \left[(x - \mu - \sigma^2 t)^2 - \sigma^4 t^2 \right] \right) dx \\
&= \exp\left( \mu t + \frac{1}{2} \sigma^2 t^2 \right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(x - \mu - \sigma^2 t)^2}{2\sigma^2} \right) dx \\
&= \exp\left( \mu t + \frac{1}{2} \sigma^2 t^2 \right)
\end{aligned}
\]


We know that \( X \sim \mathcal{N}(\mu, \sigma^2) \) has:

\[
\mathbb{E}[X] = \mu
\]

The MGF is:

\[
M_X(t) = \exp\left( \mu t + \frac{1}{2} \sigma^2 t^2 \right)
\]

Differentiate:

\[
M_X'(t) = \left( \mu + \sigma^2 t \right) \cdot \exp\left( \mu t + \frac{1}{2} \sigma^2 t^2 \right)
\]

At \( t = 0 \):

\[
M_X'(0) = \mu \cdot \exp(0) = \mu = \mathbb{E}[X]
\]

์ด MGF์˜ ํ˜•ํƒœ๋Š” ๋‚˜์ค‘์— ์ •๊ทœ๋ถ„ํฌ์˜ ์•ˆ์ •์„ฑ, ๋Œ€์ˆ˜๋ฒ•์น™, ์ค‘์‹ฌ๊ทนํ•œ์ •๋ฆฌ(CLT)์—์„œ๋„ ๋งค์šฐ ์ค‘์š”ํ•˜๊ฒŒ ์“ฐ์ž…๋‹ˆ๋‹ค.


5. Applications

๐Ÿ“Œ ๋ชจ๋ฉ˜ํŠธ ๊ณ„์‚ฐ ๋ฐ ํŠน์„ฑ ์ถ”์ •

MGF๋Š” ๋ชจ๋“  ์ฐจ์ˆ˜์˜ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ๋„ํ•จ์ˆ˜๋กœ ์–ป์„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ๋ถ„ํฌ์˜ ์„ฑ์งˆ(ํ‰๊ท , ๋ถ„์‚ฐ, ์™œ๋„, ์ฒจ๋„ ๋“ฑ)์„ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.

๐Ÿ“Œ ํ™•๋ฅ ๋ถ„ํฌ์˜ ๋น„๊ต ๋ฐ ์‹๋ณ„

์„œ๋กœ ๋‹ค๋ฅธ ํ™•๋ฅ ๋ณ€์ˆ˜๋“ค์˜ MGF๋ฅผ ๋น„๊ตํ•˜๋ฉด ๋ถ„ํฌ์˜ ๋™์ผ์„ฑ ์—ฌ๋ถ€๋ฅผ ํŒ๋ณ„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ“Œ ํ•ฉ์„ฑ ๋ถ„ํฌ์˜ ๋ถ„์„

๋…๋ฆฝํ•œ ํ™•๋ฅ ๋ณ€์ˆ˜์˜ ํ•ฉ์˜ ๋ถ„ํฌ๋ฅผ ๊ณ„์‚ฐํ•  ๋•Œ, MGF์˜ ๊ณฑ์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด ๋ถ„ํฌ์˜ MGF๋ฅผ ์–ป๊ณ ,

์—ญ๋ณ€ํ™˜์„ ํ†ตํ•ด ๋ฐ€๋„ํ•จ์ˆ˜๋ฅผ ์œ ๋„ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


6. MGF vs. Characteristic Function (CF)

ํ•ญ๋ชฉ Moment Generating Function (MGF) Characteristic Function (CF)

์ •์˜ $M_X(t) = \mathbb{E}[e^{tX}]$ $\varphi_X(t) = \mathbb{E}[e^{itX}]$
ํ•ญ์ƒ ์กด์žฌ? ์•„๋‹ˆ์˜ค ์˜ˆ (๋ชจ๋“  ํ™•๋ฅ ๋ณ€์ˆ˜์— ๋Œ€ํ•ด ์กด์žฌ)
๋ชจ๋ฉ˜ํŠธ ๊ณ„์‚ฐ ๊ฐ€๋Šฅ ๊ฐ€๋Šฅํ•˜์ง€๋งŒ ๋ณต์†Œ์ˆ˜ ๋‹ค๋ฃธ
์ˆ˜๋ ด ๊ตฌ๊ฐ„ ๋ณดํ†ต $t$์— ๋Œ€ํ•ด ๊ตญ์†Œ์  ์ „์ฒด ์‹ค์ˆ˜์„ ์—์„œ ํ•ญ์ƒ ์ˆ˜๋ ด
๊ณ ๊ธ‰ ์ด๋ก  ๋œ ์ผ๋ฐ˜์  (ํ•˜์ง€๋งŒ ์‹ค์šฉ์ ) CLT, Fourier ๋ถ„์„ ๋“ฑ์— ๋” ์ผ๋ฐ˜์ 

 

MGF๋Š” ๋ผํ”Œ๋ผ์Šค ๋ณ€ํ™˜๊ณผ, CF๋Š” ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜๊ณผ ์—ฐ๊ด€์„ฑ์„ ๊ฐ–๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๊ด€์‹ฌ์žˆ์œผ์‹  ๋ถ„๋“ค์€ ์ถ”๊ฐ€๋กœ ๊ณต๋ถ€ํ•ด๋ณด์…”๋„ ์ข‹์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.